

SERVICE INSTRUCTIONS

TURBINE MIXER MODEL TOB DRIVE SERIES 'L' MANUAL NO. 05-47821

CUSTOMER:
P.O. NO.:
MIXER MODEL NO.:
MIXER SERIAL NO.:
DRIVE SERIES & SIZE:
INPUT ASSEMBLY PARTS NO.
MIXER SHAFT SPEED:
DATE:

MIXMOR 3131 CASITAS AVENUE LOS ANGELES, CA 90039 TELE: 323.664.1941 FAX: 323.660.5677

E-MAIL: info@mixmor.com

TABLE OF CONTENTS

FOREWORD	PAGE 1
GENERAL INFORMATION	1
HANDLING INSTRUCTIONS	2
HANDLING	
INSTALLATION INSTRUCTIONSSTORAGE	3-7
LOCATION MOUNTING	
GEAR REDUCER	
FLEXIBLE COUPLING	
MIXER SHAFT	
IMPELLER	
FLANGE COUPLING DWG. NO. 05-51904 HOLLOW SHAFT ASSEMBLY DWG. NO. 05-47822	
IMPELLER DRAWING NO. 05-03915 & 05-09023	
STEADY BEARING	8
INSTALLATION	
DRAWING NO. 05-09794	
IN-TANK REMOVABLE COUPLING, DWG NO. 05-51905	8 a
IN-TANK WELDED COUPLING, DWG. NO. 05-48912	8b
GEAR REDUCER LUBRICATIONFILL LEVEL & DRAIN PLUGS LUBRICANT	9-11 d
LUBRICATION CAPACITY	
AUTOVENT PLUG	
MAINTENANCE	
OIL SPECIFICATIONS AUTOMATIC LUBRICATOR	
LOWER OUTPUT SHAFT BEARING	
START-UP INSTRUCTIONS	12
PREVENTATIVE MAINTENANCE TROUBLE SHOOTING	13-21
FLEXIBLE COUPLINGS	
OIL LEAKAGE PROTECTION CHAMBER	
DRIVE SERIES L PARTS DWG. NO. 05-47754	
INPUT ASSEMBLY PARTS DWG. NO. 05-47823	
INPUT ASSEMBLY PARTS DWG. NO. 05-47824 INPUT ASSEMBLY PARTS DWG. NO. 05-47755	
MAINTENANCE RECORD	

MIXER CERTIFIED DRAWING

FOREWORD

The information contained in this service instruction manual covers MixMor Model TOB Mixers with 'L' Series drive.

The front page of this manual and the certified drawing gives the model and drive type and size of your mixer.

We have included information in this manual that covers installation, start-up, service, and trouble shooting to assure years of reliable mixer service. Should questions or problems occur that are not covered in this manual, consult your local representative or phone MixMor at our Los Angeles, California plant (323) 664-1941.

GENERAL INFORMATION

When apparent or suspected damage has been found on equipment, during transport from factory to user, both the carrier and MixMor must be notified immediately.

When receiving equipment, a check should be made to determine whether all inventoried parts are still in the shipment. Any discrepancy should immediately be reported to both the carrier and MixMor, if claim is to be made.

MixMor mixers do not require the service of a factory engineer upon installation. This service is not included in the price of the unit; therefore, it is to be furnished, it must be agreed upon, in writing, between MixMor and the purchaser.

MixMor warranty becomes void if the unit sold is not operated within the rating and mixing service conditions for which it was specifically sold. The purchaser shall take all necessary precautions to eliminate all external destructive conditions, including unusual variable loads affecting the critical speed of the system, severe shock loading, mechanical or thermal overloads and other conditions of which MixMor was not fully advised. The mixer must be installed and maintained in accordance with this service manual.

MixMor must be informed within thirty days, for warranty to cover the mixer in the event of any malfunction during the warranty period.

All personnel directly responsible for operation of equipment must be instructed on proper installation, maintenance and safety procedures.

Design improvements are implemented on a continuous basis. Therefore, we reserve the right to make change without notice. If any questions arise regarding the data or information in this manual, please contact MixMor in Los Angeles, California.

HANDLING INSTRUCTIONS

SAFETY

When handling or working on a MixMor mixer, safety precautions must always be remembered and followed. The proper tools, clothing and methods of handling should be used to prevent any accidents.

This manual lists a number of safety precautions. Follow them. Insist that your employees do the same. Safety precautions and equipment have been developed from past accidents. Follow and use them for your protection.

HANDLING

Do not support or lift the mixer in a manner, which could create excessive stress on parts or shaft extensions. Never allow shafting to support any weight of the drive assembly. A slightly bent shaft will cause extreme mixer vibration. Support the mixer with a lifting sling to prevent damaging of any external mixer parts. Handle the mixer shaft carefully and always place it in a horizontal position, supporting it at several points.

INSTALLATION INSTRUCTIONS

STORAGE

If installation of the mixer and/or operation is to be delayed for more than one month after factory shipment, special rust preventative precautions should be taken. The precautions may be taken by the user or by the factory if full information concerning storage conditions is provided at the time of ordering. When prolonged storage is unavoidable, it should be indoor and preferable in a dry environment having a relatively constant temperature to avoid condensation problems. Always store the mixer shaft in a horizontal position, supporting it at several points.

LOCATION

The mounting location of the mixer has a definite effect on the flow pattern within the tank. The recommended location has been made with regard to your particular application and should be carefully followed to obtain optimum results.

MOUNTING

Securely bolt down the mixer to its foundation using proper size bolts, which will fit mounting holes. Bolts should be SAE Grade 5 or equivalent.

GEAR REDUCER

MixMor L Series drives are filled with oil from the factory. Consult the sticker adjacent to the fill plug to determine the type of lubricant installed at the factory. Standard lubricant is ISO VG220 mineral-based oil for drive sizes L12 thru L32, standard lubricant is Mobil SHC630 synthetic oil fro drive sizes L42 thru L92. However, some units have special lubricants designed to operate in certain environments or to extend the service life of the lubricant. If in doubt about which lubricant is needed, consult MixMor. Refer to the Gear Lubrication instructions for additional information (pages no. 9 thru 11a). Mixers with motor frame sizes 320TC thru 360TC utilize an automatic pressure lubricator for the input assembly bearing, which must be activated prior to start-up. Refer to Gear Reducer Lubrication instructions (page 11).

FLEXIBLE COUPLING

The mixer uses a flexible coupling to connect the motor output shaft to the gear reducer input shaft. After start-up, the mixers that utilize foot-mounted motors should be run until the operating temperature stabilizes. Coupling alignment should then be checked and any necessary corrections made. It is good to check the alignment, once more, after operating under a load for two or three weeks. Refer to page 15.

MIXER SHAFT - Refer to manual front page for supplied coupling design.

Flange Coupling Design

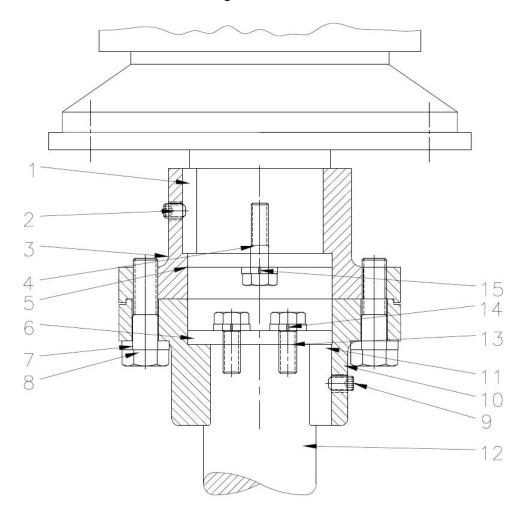
Refer to drawing no. 05-08505, page 5. Handle the shaft carefully and always place it in a horizontal position, supporting it at several points. Slide the tapered end of the shaft (12) through the mixer baseplate or mounting flange and into the flange coupling (10). Insert key (11) into the shaft and coupling keyway. Place the keeper plate (6) into the recess in the flange coupling and tighten socket flat head cap screw (13) to the recommended torque shown on the drawing. Tighten socket head set screw (9). Check the coupling rabbet faces for nicks or burrs. Raise the mixer shaft and tighten hex head cap screw (8) to the recommended torque.

Hollow Shaft Design

Refer to drawing no. 05-47822, page 6. Handle the shaft carefully and always place it in a horizontal position, supporting it at several points. Slide the shaft (4) through the mixer baseplate (3) and into the gear reducer hollow shaft (2) until the machined step or thrust collar is against the bottom of the hollow shaft. Align the shaft keyways and Insert key (6) into the hollow shaft. Place the keeper plate (5) on the top of the hollow shaft and tighten socket flat head cap screw (1) to the recommended torque shown on the drawing. Replace the hollow shaft cover.

IMPELLER

PBT4 & VFBT4 Impellers

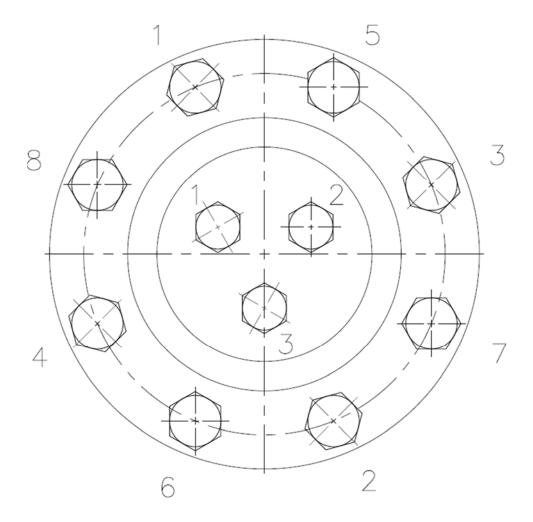

Refer to drawing no. 05-47830, page 7. The impeller hub is keyed and set screwed to the shaft. The shaft may be spot drilled for the set screws on larger, heavier impellers. The impeller assembly is statically balanced at the factory. The bolted assembly impeller will have the blades and hub ears match marked for assembly in the field.

FM3, FM4, FM3W & FM4W Impellers

Refer to drawing no. 05-47831, page 7. The impeller hub is keyed and set screwed to the shaft. The shaft may be spot drilled for the set screws on larger, heavier impellers.

REDUCER FLANGE COUPLING ASSEMBLY

Dwg. No. 05-51904

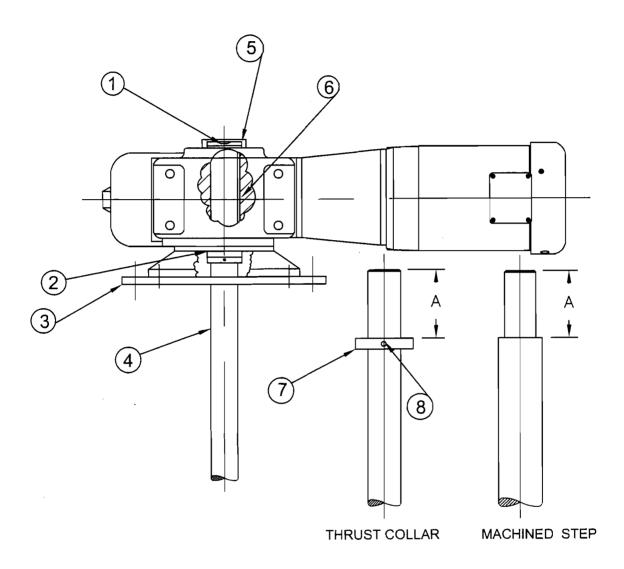


ITEM NO.	DESCRIPTION
1	KEY
2	SOCKET HEAD SET SCREW
3	GEAR REDUCER COUPLING
4	HEX HEAD CAP SCREW
5	KEEPER PLATE
6	KEEPER PLATE
7	LOCK WASHER
8	HEX HEAD CAP SCREW
9	SOCKET HEAD SET SCREW
10	MIXER SHAFT COUPLING
11	KEY
12	LOWER SHAFT
13	HEX HEAD CAP SCREW
14	LOCK WASHER
15	LOCK WASHER

RECOMMENDED TIGHTENING TORQUES, FTLB			
SCREW SIZE	NO. 8 HEX HEAD CAP SCREW GRADE 5	NO. 4 & 13 HEX HEAD CAP SCREW GRADE 8	
1/2"-13	75	105	
5/8"-11	150	210	
3/4"-10	260	375	
7/8"-9	430	600	
1"-8	640	900	

NOTE: PROVIDED TORQUE INTERVALS ARE FOR DRY THREADS. FOR LUBRICATED THREADS USE 75% OF THE TORQUE VALUE

BOLT TIGHTENING SEQUENCE FOR COUPLINGS

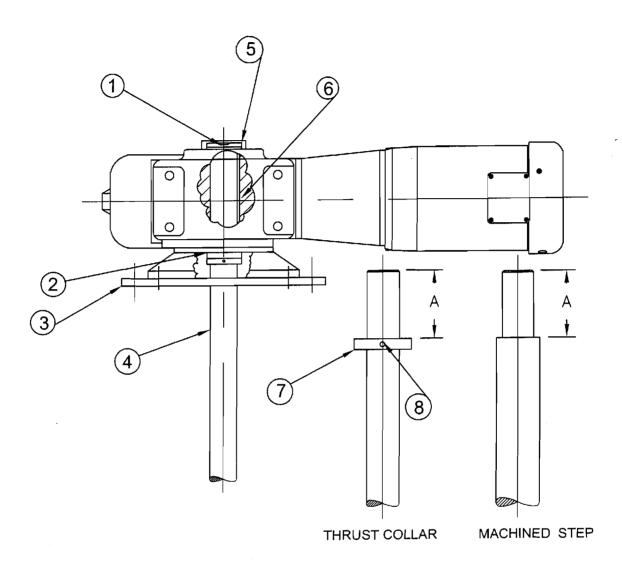


After coupling assembly and all nuts have been run down by hand, start wrench tightening following the sequence of the numbers indicated to the torque provided.

During the following steps, keep any gap between couplings even all around the circumference.

- First time around snug the nuts with a socket wrench
- Second time around tighten the nuts firmly
- Third time apply 25% recommended torque
- Fourth time apply 75% recommended torque
- Fifth time apply 100% recommended torque
- Continue tightening nuts all around until nuts do not move under 100% recommended torque
- If possible, re-torque after 24 hours. Most of any bolt preload loss occurs within the first 24.

MIXER SHAFT ASSEMBLY Dwg. No. 05-47822

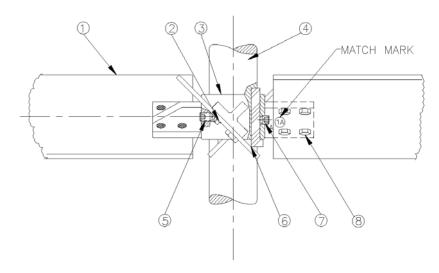


PART NO.	DESCRIPTION
1	SOCKET HEAD FLAT SCREW
2	HOLLOW BORE SHAFT
3	BASEPLATE
4	MIXER SHAFT
5	KEEPER PLATE
6	KEY
7	THRUST COLLAR
8	SOCKET HEAD SET SCREW (2)

DRIVE SIZE	TORQUE FT./LBS.
L12	142
L22	142
L32	142
L42	250
L52	250
L72	250
L82	416
L86	416

DRIVE SIZE	'A' DIM.
L12	8.40"
L22	10.30"
L32	11.14"
L42	13.97"
L52	17.71"
L72	20.35"
L82	23.89"
L86	29.37"

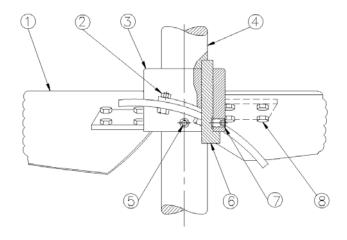
MIXER SHAFT ASSEMBLY Dwg. No. 05-47822



PART NO.	DESCRIPTION
1	SOCKET HEAD FLAT SCREW
2	HOLLOW BORE SHAFT
3	BASEPLATE
4	MIXER SHAFT
5	KEEPER PLATE
6	KEY
7	THRUST COLLAR
8	SOCKET HEAD SET SCREW (2)

DRIVE SIZE	TORQUE FT./LBS.
L22	170
L32	170
L42	300
L52	300
L62	300
L82	485
L86	485

DRIVE SIZE	'A' DIM.
L22	10.47"
L32	11.42"
L42	14.25"
L52	17.95"
L62	20.63"
L82	24.21"
L86	29.37"


PBT4 & VFBT4 IMPELLERS Dwg. No. 05-47830

Shafts may be spot drill for larger impeller set screws

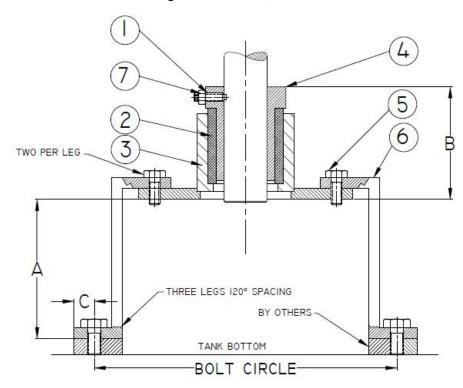
PART NO.	DESCRIPTION	PART NO.	DESCRIPTION
1	BLADE	5	SOCKET HEAD SET SCREW
2	LOCK WASHER	6	HOOK KEY
3	HUB	7	SOCKET HEAD SET SCREW
4	SHAFT	8	HEX HEAD CAP SCREW

FM3, FM4, FM3W & FM4W IMPELLERS Dwg. No. 05-47831

Shafts may be spot drill for larger impeller set screws

PART NO.	DESCRIPTION	PART NO.	DESCRIPTION
1	BLADE	5	SOCKET HEAD SET SCREW
2	HEX NUT	6	HOOK KEY
3	HUB	7	SOCKET HEAD SET SCREW
4	SHAFT	8	HEX HEAD CAP SCREW

STEADY BEARING


INSTALLATION - Refer to drawing No. 05-09794, Rev. 4

The steady bearing must be centered on the mixers shaft's axis of rotation. To assure that the bearing is properly located and to minimize bearing preload, it must be installed after the mixer is mounted onto the tank and after the shaft is installed.

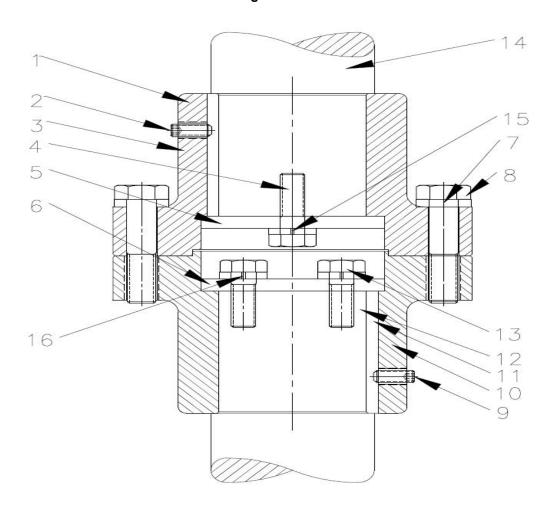
To find the shaft's center of rotation, attach a marker that will contact the tank bottom to the end of the shaft. Remove the motor fan cover and rotate the motor fan. This will draw a circle on the tank bottom. Install the bearing in the center of the circle.

Spot drill the mixer shaft for the half dog point set screws (1) and lock in place with hex nut (7).

The shaft runout will differ depending upon the shaft length and diameter.

Dwg. No. 05-09794, Rev. 4

PART NO.	DESCRIPTION
1	HALF DOG POINT SOCKET HEAD SET SCREW
2	BUSHING*
3	CARTRIDGE
4	SHAFT WEAR SLEEVE*
5	HEX HEAD CAP SCREW*
6	STAND
7	HEX NUT

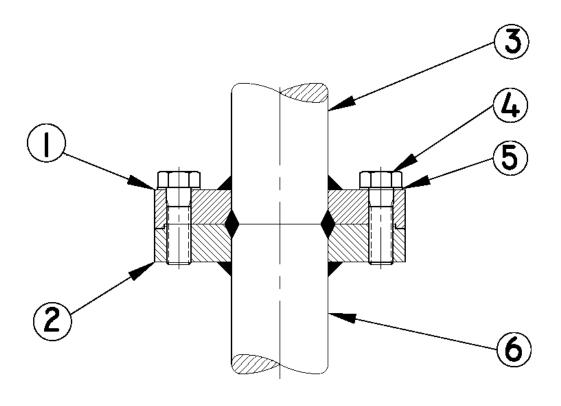

^{*} RECOMMENDED SPARE PARTS

SHAFT DIA.	А	В	С	BOLT CIRCLE	HOLE SIZE
$ \frac{1}{2}$ " $- \frac{3}{4}$ "	5"	4"	<u>3</u> "	11 <mark>3</mark> "	9"
2"-2 <u>1</u> "	5 <u>1</u> "	5 <u>1</u> "	15 _"	141"	<u>II</u> "
2 <u>1</u> "	6 <u>1</u> "	5 <u>l</u> "	15 _"	141"	<u>II</u> "
2 3 "-3"	6 <u>1</u> "	6 <u>5</u> "	15 _"	1448"	<u>II</u> "
3 <u>1</u> "	7 <u>1</u> "	6 5 "	15 _"	15 3 "	1 <u>3</u> " 16
4"-5"	7 <u>1</u> "	6 <u>5</u> "	<u> </u> "	15 ³ / ₈ "	1 <u>3</u> " 16

DIMENSIONS ARE APPROXIMATE

INTANK FLANGE COUPLING ASSEMBLY

Dwg. No. 05-51905


ITEM NO.	DESCRIPTION
1	KEY
2	SOCKET HEAD SET SCREW
3	UPPER SHAFT COUPLING
4	HEX HEAD CAP SCREW
5	KEEPER PLATE
6	KEEPER PLATE
7	LOCK WASHER
8	HEX HEAD CAP SCREW
9	SOCKET HEAD SET SCREW
10	LOWER SHAFT COUPLING
11	KEY
12	LOWER SHAFT
13	HEX HEAD CAP SCREW
14	UPPER SHAFT
15	LOCK WASHER
16	LOCK WASHER

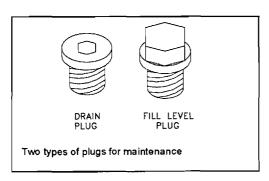
REG	RECOMMENDED TIGHTENING TORQUES, FTLB					
SCREW	NO. 8 HEX HEAD CAP SCREW			EX HEAD CAP		
SIZE	ALLOY STEEL GRADE 5	STAINLESS STEEL GRADE 5	ALLOY STEEL GRADE 8	STAINLESS STEEL GRADE 8		
1/2"-13	75	45	105	45		
5/8"-11	150	95	210	95		
3/4"-10	260	150	375	150		
7/8"-9	430	190	600	190		
1"-8	640	280	900	280		

NOTE: PROVIDED TORQUE INTERVALS ARE FOR DRY THREADS. FOR LUBRICATED THREADS USE 75% OF THE TORQUE VALUE

WELDED INTANK FLANGE COUPLING ASSEMBLY Dwg. No. 05-48912

Revised 04/13

ITEM NO.	DESCRIPTION		
1	UPPER SHAFT COUPLING		
2	LOWER SHAFT COUPLING		
3	UPPER SHAFT		
4	HEX HEAD CAP SCREW		
5	LOCK WASHER		
6	LOWER SHAFT		


RECOMMENDED TIGHTENING TORQUES, FTLB				
SCREW SIZE	ALLOY STEEL GRADE 5	STAINLESS STEEL GRADE 5		
1/2"-13	75	45		
5/8"-11	150	95		
3/4"-10	260	150		
7/8"-9	430	190		
1"-8	640	280		

NOTE: PROVIDED TORQUE INTERVALS ARE FOR DRY THREADS. FOR LUBRICATED THREADS USE 75% OF THE TORQUE VALUE

GEAR REDUCER LUBRICATION

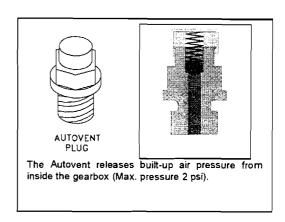
FILL LEVEL & DRAIN PLUGS

The drain plugs are metric socket head cap screws. They will be located at the lowest part of the gearbox for ease of draining. The fill level plug is a hex head cap screw. It will be located between the Autovent and drain plug. Both types of plugs will have gaskets included to prevent oil from leaking.

LUBRICANT

All NORD reducers are shipped from the factory properly filled with lubricant and all plugs are installed according to the mounting position given on the reducer nametag. Acceptable oil fill level is within ½ inch of the bottom of the fill plug threads.

OPERATION AND MAINTENANCE CHECKLIST


- 1. Operate the equipment as it was intended to be operated
- 2. Do not overload.
- 3. Run at correct speed.
- 4. Maintain lubricant in good condition and at proper level.
- Dispose of used lubricant in accordance with applicable laws and regulations.
- Apply proper maintenance to attached equipment at prescribed intervals recommended by the manufacturer.
- Perform periodic maintenance of the gear drive as recommended by NORD.

LUBRICATION CAPACITY

DRIVE SIZE	QUARTS
L22	2.11
L32	3.49
L42	6.87
L52	12.15
L62	20.08
L82	40.15
L86	56.00

AUTOVENT PLUG

The Autovent plug is brass in color and will be located at the highest point on the gearbox. It operates like a check-valve to allow the reducer to relieve internal pressure while preventing lubricant contamination during cooling. A spring presses a ball or plunger against a machined orifice until pressure exceeds 2 psi. Above 2 psi the air is allowed to escape depressurizing the gearcase. When internal pressure drops below 2 psi, the autovent re-seals closing the unit to the outside environment. After shutdown, the reducer cools along with the air inside the reducer. The unit will temporarily maintain a slight vacuum until normalization occurs. NORD Gear supplies an Autovent as a standard feature.

MAINTENANCE

Mineral oil should be changed every 10,000 hours or after two years. For synthetic oils, the lubricant should be changed every 20,000 hours or after four years. In case of extreme operating conditions (e.g. high humidity, aggressive environment or large temperature variations), shorter intervals between changes are recommended. If in doubt about the intervals, consult MixMor or your lubricant supplier.

OIL SPECIFICATIONS

MixMor L Series drives are filled with oil from the factory. Consult the nameplate/tag adjacent to the fill plug to determine the type of lubricant installed at the factory. Drive sizes L12 thru L32 standard lubricant is ISO VG220 MIN-EP mineral oil with EP Additive and NLGI 2 MIN mineral based grease. Drive sizes L42 thru L92 standard lubricant is ISO VG220 PAO synthetic polyalphaolefin oil and NLGI 2 PAO synthetic grease. However, some units may have special lubricants designed to operate in certain environments, or to extend the service life of the lubricant. If in doubt about which lubricant is needed, consult MixMor.

Standard Oil Lubricants

ISO Viscosity	Oil Type	Ambient Temperature Range	Manufacturer Brand/Type	Notes
	MIN-EP	0 to 40°C (32 to 104°)	Mobilgear 600XP220	40
VG220	PAO	-35 to 60°C (-31 to 140°F)	Mobil SHC630	40
HAME E	FG	-5 to 40°C (23 to 104°F)	Fuchs FM220	•

Optional Oil Lubricants

ISO Viscosity	Oil Type	Ambient Temperature Range	Manufacturer Brand/Type	Notes
VC4CO	PAO	-35 to 80°C (-31 to 176°F)	Mobil SHC 634	
VG460	FG-PAO	-35 to 80°C (-31 to 176°F)	Mobil SHC Cibus 460	
VG220	FG-PAO	-35 to 60°C (-31 to 140°F)	Mobil SHC Cibus 220	-
VG150	PAO	-35 to 25°C (-31 to 77°F)	Mobil SHC629	-

Grease Options (applied to greased bearings and seal cavities)

NLGI Grade	Grease Thickener	Grease Base Oil	Ambient Temperature Range	Manufacturer Brand/Type	Notes
	Li-Complex	MIN	-30 to 60°C (-22 to 140°F)	Mobil Grease XHP222	40
NLGI 2	Li-Complex	PAO	-40 to 80°C (-40 to 176°F)	Mobil / Mobilith SHC 220	10
	Polyurea	FG-PAO	-30 to 80°C (-22 to 176°F)	Mobil SHC Polyrex 222	•

- Stocked Lubricants
- Standard product on serviceable gear units
- Standard product on maintenance free gear units

1

IMPORTANT NOTE

- The "Ambient Temperature" is intended to be an operation guideline based upon the typical properties of all the
 lubricant. The viscosity and other properties of the lubricant change based upon load, speed, ambient conditions, and
 reducer operating temperatures. The user should consult with their lubrication supplier & NORD gear before considering
 changes in oil type or viscosity.
- To prevent reducer overheating, observe the maximum operating oil temperature limits: Mineral Oil: 80-85 °C (176 – 180 °F).
 Synthetic Oil: 105 °C (225 °F).
- In the following instances, please consult NORD for specific recommendations:
 - √ Gear units will operate in high ambient temperature conditions exceeding 40 °C (104 °F).
 - Gear units will operate in cold ambient temperature conditions approaching 0 °C (32 °F) or lower.
 - Lower than an ISO VG100 viscosity oil is being considered for a cold-temperature service.
- √ Fluid grease is required for lubricating the gear unit.
- Observe the general lubrication guidelines outlined in user manual U10750.

Oil Formulation Codes

MIN-EP - Mineral Oil with EP Additive

PAO-EP - Synthetic Polyalphaolefin Oil with EP Additive

PAO - Synthetic Polyalphaolefin Oil PG - Synthetic Polyglycol Oil

FG - Food-Grade Oil

FG-PAO - Food-Grade, Synthetic Poyalphaolefin Oil FG-PG - Food-Grade, Synthetic Polyglycol Oil

Lubrication Notes

- Avoid using (EP) gear oils in worm gears that contain sulfur-phosphorous chemistries, as these additives can react adversely with bronze worm gears and accelerate
- Food grade lubricants must be in compliance with FDA 212 CFR 178.3570 and qualify as a NSF-H1 lubricant. Please consultwith lubrication manufacturer for more information.
- When making a lubrication change, check with the lubrication supplier to assure compatibility and to obtain recommended cleaning or flushing procedures.
- Do not to mix different oils with different additive packages or different base oil formulation types. Polyglycol (PG) oils are not miscible with other oil types and should never be mixed with mineral oil or polyalphaolefin (PAO) synthetic oil.

AUTOMATIC LUBRICATOR

DRIVESYSTEMS ————— RETAIN FOR FUTURE USE

Automatic Lubricator

This lubricator is used only on input assembly no. 05-47755, for motor frame sizes 320TC thru 360TC, refer to page 23 for assembly details.

Principle of Operation

First the activation screw is threaded into the lubrication can-ister. Then the ring-eyelet on top of the activation screw is tightened until its breaking point. This causes a zinc-molyb-denum gas generator to drop into a citric acid liquid electro-lyte, which is contained within an elastic bladder. An electro-chemical reaction slowly releases small amounts of hydrogen gas and gradually pressurizes the bladder, pushing the piston towards the lubrication chamber.

Grease is continuously injected into the lubrication point until the bearing cavity is full. Any back pressure from the bear-ing will cause the system to neutralize. The bladder inside the canister will continue to slowly build pressure so that once the equipment resumes normal operation; the lubricator will also resume its normal function.

The lubricator contains approximately 120 cm³ or 120 ml (4.8 oz) of grease. For reference, a single stroke of a typical grease gun delivers approximately 1.0-1.2 cm³ (0.03–0.04 oz) of grease. This means the canister contains approximately 100 strokes of grease. See Figure 1 for a detailed view of the PERMA® Lubricator.

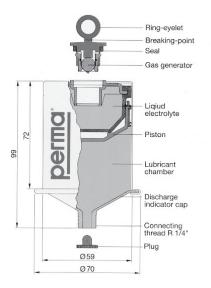


Figure 1 - PERMA® Automatic Lubrication Canister

HARMFUL SITUATION (109)

- To prevent premature bearing failure, the lubrication dispenser must be activated prior to commissioning the gear reducer.
- The lubricator must only be used once and should never be opened or taken apart or permanent damage will result.
- Never unscrew the PERMA® canister from the lubrication point after activation or during the discharge period. This would cause a permanent pressure loss in the lubricator and would justify replacing the lubricator.

- Avoid swallowing the gas generator, the liquid electrolyte, and the lubricant.
- Avoid contact of, the liquid electrolyte, and the lubricant with the eyes, skin or clothing.
- Observe all applicable MSDS sheets.
- Follow applicable local laws and regulations concerning waste disposal.

PERMA® Automatic Lubricator Options Supplied by NORD

NORD Part Number	28301000	28301010
Lubrication Option	Synthetic (standard)	Food Grade (optional)
PERMA® Classic Temperature Range ◆	0 to 40 °C (32 to 104 °F)	0 to 40 °C (32 to 104 °F)
Lubrication Volume	120 cm³ or 120 ml (4.8 oz)	120 cm ³ or 120 ml (4.8 oz)
Grease Lubrication Mfg. / Type	Klüber / Petamo GHY 133	Lubriplate / FGL1
Lubrication Temperature Range ◆	-30 to 120 °C (-22 to 248 °F)	-18 to 120 °C (0 to 248 °F)

♦ The temperature range values shown do not apply to other components and/or lubricants within the gear reducer.

AUTOMATIC LUBRICATOR

DRIVESYSTEMS — RETAIN FOR FUTURE USE

Lubricator Service Interval

The Automatic lubricator should be inspected approximately every 6 months. At the end of the lubrication period the piston becomes clearly visible through the clear nylon discharge indicator cap located at the bottom of the PERMA® canister (Figure 1); this helps indicate that the lubricant has been fully discharged at which time the lubricator should be replaced. When operating the gear unit 8 hours/day or less a replacement interval of 12 months or 1 year is possible. Ambient temperature will influence the discharge rate and may extend or shorten the replacement interval.

Ambient Considerations

The grease discharge rate is affected by the ambient temperature. PERMA® indicates that the lubricator contents will dispense for a 12 month period when the average temperature is 20 °C (68 °F). Grease dispensing rates depend primarily on average ambient conditions and not extreme highs and lows. Lower ambient temperatures will lead to slower dispensing rates and higher ambient temperatures will lead to faster dispensing rates.

Average Ambient Temperature	Discharge Period Months ◆
0 °C (32 °F)	>18
10 °C (50 °F)	18
20 °C (68 °F)	12
30 °C (86 °F)	6
40 °C (104 °F)	3

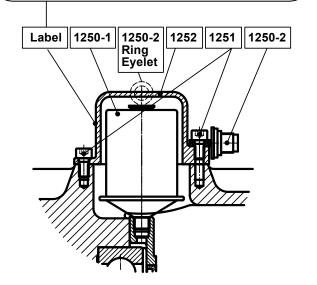
[♦] Values are approximate.

Discharge can also be influenced by type of lubricant, vibration, and by the mating connecting parts in the lubrication system.

Activating the Automatic Lubricator

- 1. Loosen and remove the M8x16 assembly socket head cap screws (1251).
- 2. Carefully remove the protective cover (1252) installed over the automatic lubricator (1250-1).
- Screw the activation screw (1250-2) into the automatic lubricator (1250-1) and twist the ring-eyelet until it reaches its breaking point.
- 4. Re-fit the cartridge cover (1250-1) and re-install and tighten the assembly screws (1251).
- Mark the activation date on the adhesive label that is provided.

Figure 2 - Activating the Automatic Lubricator


Attention! ivation screw until th

Screw in the activation screw until the lug breaks off before commissioning the gear unit.

Dispensing time: 12 Months

Activation Date

Month Year
1 2 3 4 5 6 7 8 9 10 11 12 11 12 13 14 15

1250-1 Automatic Lubricator **1250-2** Activation Screw

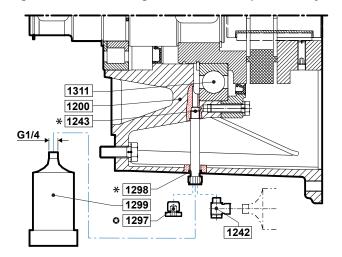
1251 Socket Head Cap Screws

1252 Protective Cover

AUTOMATIC LUBRICATOR

RETAIN FOR FUTURE USE

Grease Purge and Grease Drain Cup


DRIVESYSTEMS

Some versions of the NEMA (or IEC) adapters also include a grease purge and a grease drain cup (1299) for collecting old grease. The grease purge area is sealed for transportation.

It is recommended that the G1/4 sealing screw (1297) be removed and that the grease drain cup be installed after the automatic lubricant dispenser is activated.

The swivel fitting (1242) that NORD supplies allows the grease cup to be positioned at a 90° angle from its typical mounting. The swivel fitting allows the grease cup to be rotated so that it remains clear of any gear unit mounting obstructions.

Figure 3 – Grease Purge and Grease Cup Assembly

1200 NEMA or IEC Input Cylinder

1242 Swivel Fitting (P/N) 22006359)

1243 Extension*

1297 Screw Plug o

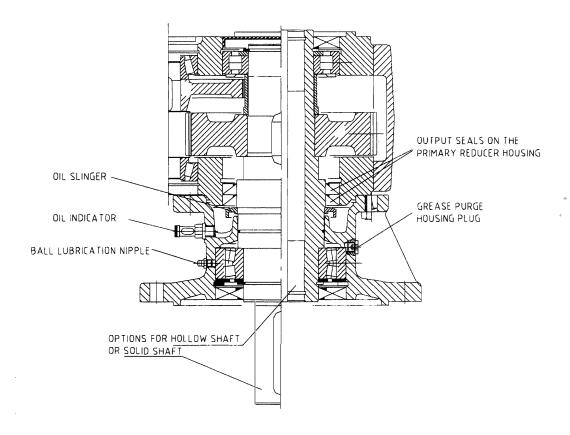
1298 Seal Ring*

1299 Grease Drain Cup (P/N 2830100)

1311 Bearing

- * Supplied on certain input assembly sizes as needed.
- Remove the screw plug to install either the grease drain cup or the swivel fitting with the grease drain cup.

Grease Cup Servicing


NORD suggests that with every second replacement of the automatic lubricator, the grease collection cup (NORD Part No. 28301210) should be emptied or replaced with a new one. Follow the steps below to service the grease cup.

- Unscrew the grease drain cup (1299) from either the outlet port of the NEMA or IEC input cylinder or from the extension (1243) that is secured to the NEMA or IEC input cylinder.
- 2. To empty the grease drain cup (1299) insert a stiff rod through the hole in the grey cap-end of the drain cup and push the internal plunger towards the thread-end of the drain cup. Please note that the dark gray end cap is bonded into place and cannot be removed.
- Collect and properly dispose of the grease being pushed out of the drain cup. Due to the design of the container a residual amount of grease may remain in the container.
- After emptying and cleaning the grease cup it can be fitted back onto the grease outlet port of the NEMA or IEC adaptor.
- In the event the grease cup becomes damaged or it should be replaced with a new container. Consider replacing the grease cup (P/N 2830100) with every second replacement of the automatic lubricator.

Replacing the Automatic Lubricator

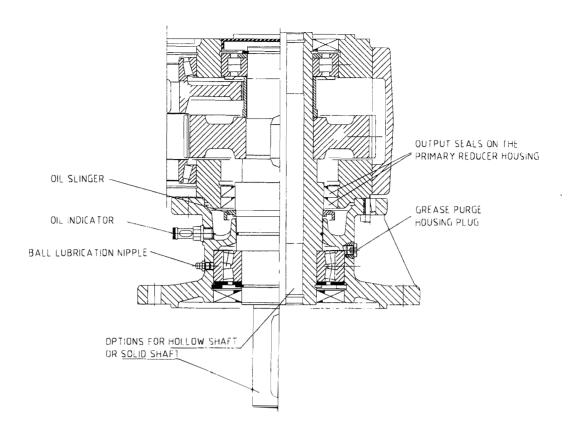
A new automatic lubricator can be ordered from NORD by specifying the appropriate Part Number from the table at the bottom of Page 1 of this manual. Reference Figure 2 and follow the steps below to replace the automatic lubricator.

- 1. Loosen and remove the M8x16 socket head cap screws (1251) holding the protective cover (1252) in place.
- 2. Unscrew the automatic lubricator (1250-1) from the bearing cover area of the NEMA or IEC input cylinder.
- 3. Install the new automatic lubricator and activate per the instructions on page 2.
- 4. Re-install the protective cover (1252) and the assembly screws (1251).
- Note the activation date of the newly installed automatic lubricator

The lower output shaft bearing is grease lubricated and is shipped from the factory lubricated with standard NLGI 2EP Lithium grease. It should be re-lubricated after every 5,000 hours of operation or a minimum of every 10 months.

Remove the grease purge housing plug and hand pump grease thru the ball lubrication nipple until grease flows out the purge port. Do not mix formulations.

STANDARD BEARING GREASE


Ambient Temperature	Formulation	Name	Manufacturer
-20 to 140°F	Mineral	NLGI 2EP Lithium	Generic

OPTIONAL BEARING GREASES

Ambient Temperature	Formulation	Brand Name	Manufacturer
-40 to 230°F	Synthetic	Aeroshell 6	Shell
-40 to 230°F	40 to 230°F Food Grade Synthetic		Lubriplate

GREASE CAPACITY

Drive Series & Size		Re-Lubrication Volume
F12 thru F52 L12 thru L52		1 oz.
F62 thru F82 L62 thru L82		2 oz.
F92	L86 thru L92	3 oz.

The lower output shaft bearing is grease lubricated and is shipped from the factory lubricated with standard NLGI 2EP Lithium grease. It should be re-lubricated after every 5,000 hours of operation or a minimum of every 10 months.

Remove the grease purge housing plug and hand pump grease thru the ball lubrication nipple until grease flows out the purge port. Do not mix formulations.

STANDARD BEARING GREASE

Ambient Temperature	Formulation	Name	Manufacturer
-20 to 140°F	Mineral	NLGI 2EP Lithium	Generic

OPTIONAL BEARING GREASES

Ambient Temperature	Formulation	Brand Name	Manufacturer
-40 to 230°F	Synthetic	Aeroshell 6	Shell
-40 to 230°F	Food Grade Synthetic	SFL1	Lubriplate

GREASE CAPACITY

Drive Series & Size		Re-Lubrication Volume
F12 thru F52 L12 thru L52		1 oz.
F62 thru F82 L62 thru L82		2 oz.
F92	L86 thru L92	3 oz.

START-UP INSTRUCTIONS

When starting up any new piece of equipment, it is wise to proceed cautiously. Even though the best installation practices are followed, the possibilities of errors or omissions always exist. MixMor recommends that before the initial start-up, the following checklist should be followed:

- 1. Has all accessory equipment such as: breathers, level indicators, pressure gauges, switches, etc., been mounted? It is often necessary to box these items separately to prevent damage or loss in shipment.
- 2. Are mounting bolts tight? Check all external bolts, screws, accessories, etc., to make sure they have not become loose in shipping and handling.
- 3. Have all couplings been mounted to shaft extensions correctly with keys and fasteners in place?
- 4. Have bearings been greased?
- 5. Have couplings been tightened properly? Have necessary guards and safety devices been installed at all hazardous locations?
- 6. Has the gear reducer lubricant been checked as outlined in the GEAR REDUCER LUBRICATION section? Before start-up, mixers with motor frames 320TC thru 360TC, must have the input assembly automatic pressure lubricator installed and activated.
- 7. Have required electrical connections been made? Units should be wired in accordance with motor manufacturers' wiring diagram on the motor.
- 8. Have required piping connections been made?
- 9. Have mixer shaft seal instructions been followed?

Mixers are test run at the factory. However, during start-up, the following procedures are recommended:

- 1. If the reducer is equipped with heaters for cold temperature operation, turn on heaters and allow to rise to at least 65°F.
- 2. Start unit slowly under as light a load as possible. Check rotation of the shaft against rotation arrow on the mixer housing. If necessary, reverse electrical leads on motors to have shaft rotation conform to direction shown on mixer.
- 3. Prime mover electrical starting equipment should be arranged to start unit as slowly as possible to avoid severe impact loads.
- 4. As the mixer is brought up to normal operating speed, it should be checked continuously for unusual sounds, excessive vibrations, excessive heat or leakage. If any of these develop, the unit should be shut down immediately and the cause determined and corrected. The operating temperature of the mixer at the hottest point should not exceed 200°F.
- 5. If possible, the mixer should be operated under a light load (approximately half-load) for one or two days to allow final breaking-in of gears. After this period, the unit can be operated under normal load.
- 6. After the first 48 hours of operation, all external housing and mounting fasteners should be checked for tightness. Loose fasteners can cause alignment problems and excessive wear.
- 7. The alignment of the flexible coupling should be checked and any necessary corrections made. It is good practice to check the alignment once more after operating under a load for two or three weeks.

GEAR REDUCER

PREVENTATIVE MAINTENANCE

Keep the shafts and dip stick/vent clean to prevent foreign particles from entering the shaft seals or gear case which could cause premature wear. Never paint the vent plug. Check coupling set screws and all fasteners for tightness. Loose fasteners will cause alignment problems and excessive wear. Check end play in shaft. Noticeable movement might indicate service or parts replacement. The lubrication instructions should always be carefully followed. Inspect the reducer periodically for oil leaks. When oil seals are new, a small amount of lubricant leakage may appear until the seals are seated.

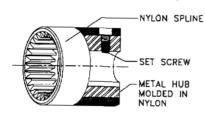
Proper maintenance will result in years of trouble-free performance and an extended life.

TROUBLE SHOOTING

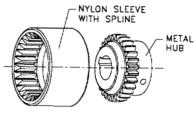
It is advisable to periodically inspect the gear reducer for signs of wear. Spare or replacement parts can often be ordered and obtained before disassembly is necessary, thus minimizing downtime. Most of the following observations can be visually inspected without disassembly and may, in some cases, require repair work.

CHECKLIST			
OBSERVATION	POSSIBLE SOURCE	ACTION	
	1) Loose hardware	Be certain all external housing and mounting fasteners are Tight	
MBDATION	2) Bearing failure	Replace bearings	
VIBRATION	Signal alignment	Check alignment of high-speed flexible coupling and condition Of flexible member.	
	Foreign particles in bearings and gears	Foreign particles will cause excessive wear. Take steps to Prevent entrance of particles. Thoroughly flush drive and Refill with new oil. Modify maintenance schedule to increase Frequency of oil changes.	
	1) Incorrect oil	Refer to Lubricating Instructions for correct oil. Flush drive And refill with correct oil.	
	2) Oil level	Check oil level and add or drain to correct level	
	3) Oil condition	Check to see if oil is oxidized, dirty, or of high sludge content. Change oil.	
	4) Amount of grease in bearing	Refer to Lubrication Instructions. Make sure bearing does not have An insufficient or excessive amount of grease in it.	
OVERHEATING	5) Wrong type of bearing grease	Refer to Lubrication Instructions. If incorrect grease has been used, Flush housing with grease.	
	6) Bearing adjustment	Adjustable tapered bearings must be set to proper axial play. All Shafts should turn freely when not under load	
	7) Breather	Breather must be free of any obstruction. Clean breather as Required.	
	8) Overloaded	Check mixer speed and impeller diameter against certified drawing. Has the specific gravity and/or viscosity of the product increased? Inspect for material build-up on impeller. Check shaft rotation Against rotation arrow.	

	CHECKLIST		
OBSERVATION	POSSIBLE SOURCE	ACTION	
	1) Bearing failure	Replace bearings	
	2) Rust inside drive	Rust can be caused by entrance of water or humidity. Flush And thoroughly clean drive. Take steps to prevent further Entrance of water and use a lubricant with good rust-inhibiting Properties.	
NOISE	Extended shut-down or improper storage	When drives are not properly prepared for extended shut- Down or storage in a moist atmosphere or a temperature Condition which will cause condensation, destructive rusting Of bearing, gears and shafts/seals will take place. Clean and Replace parts as required.	
	4) Overloaded	Overloading can cause excessive separation of gear teeth And loud operation. Refer to OVERHEATING , Source No. 8	
	5) Refer to VIBRATION, Source No.'s 3 & 4		
	6) Refer to OVERHEATING, Source No.'s 1,2,3,4,5 & 6		
	1) Worn oil seals	Replace defective seals	
	Oil in drywell leaking at output shaft	During storage or when mixer is being installed, with oil in the Reducer, oil can flow over the drywell and through the output Shaft seal. Check if oil level is too high. Remove lower Bearing assembly and drain drywell.	
	3) Plugged breather	Breather must be free of any obstructions. Clean breather as Required.	
OIL LEAKING	4) Gear case/ cap joints	Tighten fasteners. If this does not stop leakage, remove covers or caps, clean surfaces and replace gaskets or apply new sealing compound.	
	5) Drain plugs, sight glasses or pipe fittings	Remove and clean all fittings. Apply a pipe joint sealant and re-install fittings.	


FLEXIBLE COUPLINGS

Depending on the size of the input adapter to the gearbox, NORD Gear supplies two styles of couplings - BoWex® (gear tooth) and Rotex® (jaw) couplings.

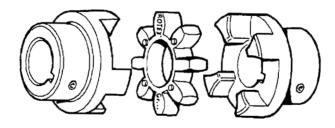

BoWex® Couplings

NORD C-face adapter input shafts have a machined spline on the end. NORD incorporates two styles of BoWex® couplings, the "J" and "M" styles. The "J" style is a one-piece coupling with a metal hub and nylon spline. The "M" style is a two piece coupling – the metal hub and a nylon sleeve. Nylon and steel components allow them to operate in high ambient temperatures without lubrication or maintenance.

- Nylon sleeves resist dirt, moisture, most chemicals and petroleum products
- No lubrication required
- Operating Conditions: -22°F 195°F (-30°C 90°C)
- Higher temperature coupling sleeve available up to 250°F (120°C)

"M-STYLE" COUPLING

BoWex® Mechanical Ratings

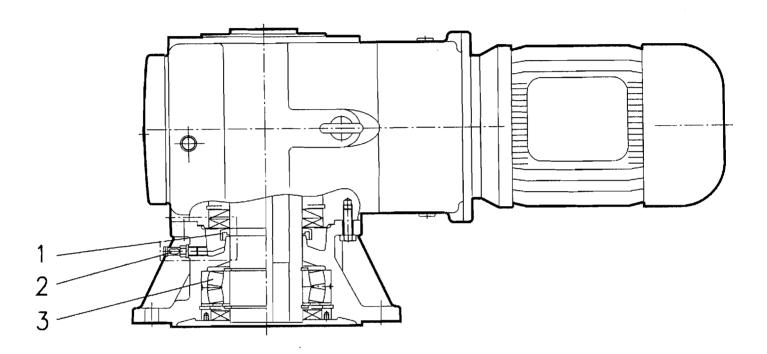

"J	"	S	w	le

Coupling	Available .	Max.	Input
Type	Bore Sizes	Torque	
J14	11, 14 mm	20 Nm	IEC 63, 71
	.5/8 in.	177 lb-in	NEMA 56C
J24	19, 24 mm	40 Nm	IEC 80
	5/8, 7/8 in	354 lb-in	NEMA 56C,140TC
J28	28mm	90 Nm	IEC 100, 112
	1 1/8 in	797 lb-in	NEMA 180TC

"M"	Style
-----	-------

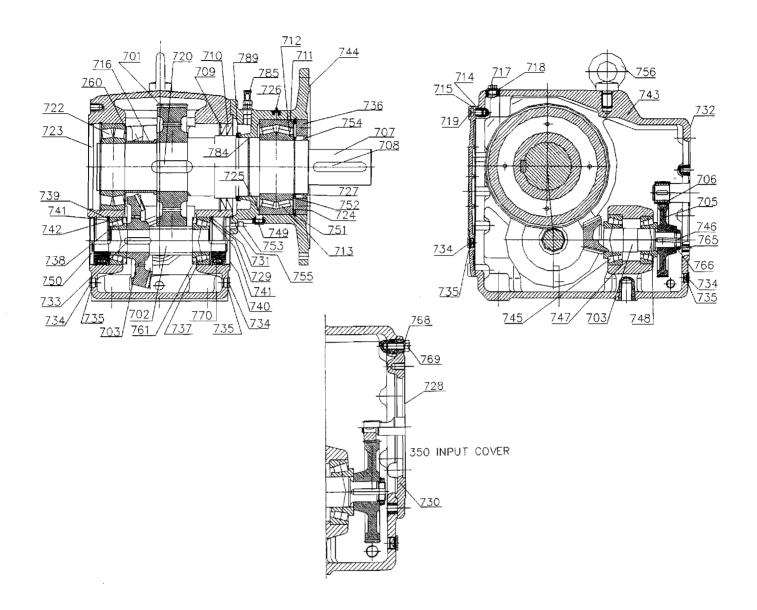
_ MI Style			
Coupling Type	Available Bore Sizes	Max. Torque	Input
	38 mm	160 Nm	IEC 132
M38	1 1/8, 1 3/8 in.	1,416 lb-in	NEMA 180TC, 210TC
M42	42 mm	200 Nm	IEC 160
	1 5/8 in	1,770 lb-in	NEMA 250TC
M48	48 mm	280 Nm	IEC 180
	1 7/8 in	2,478 lb-in	NEMA 280TC

Rotex® Couplings

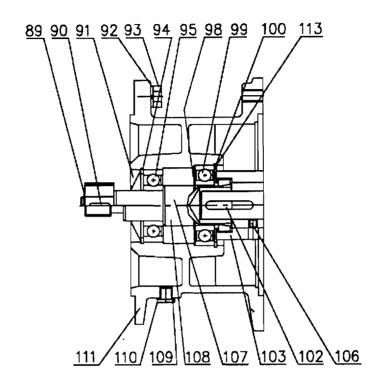

Rotex® Mechanical Ratings

Coupling Type	Available Bore Sizes	Max. Torque	C-Face Inputs	Spider
R48	42, 48 mm 1 5/8, 1 7/8 in	620 Nm 5,487 lb-in	IEC 160, 180 NEMA 250T, 280T	
R65 60 mm 2 1/8, 2 3/8 in		1,250 Nm 11,063 lb-in	IEC 225 NEMA 320T, 360T	Urethane 92 Shore A Hardness Color: Yellow
R90	65, 75, 80 mm 2 1/8, 2 3/8 in	4,800 Nm 42,480 lb-in	IEC 250, 280, 315 NEMA 360T, 400TS, 440TS	Color: reliow

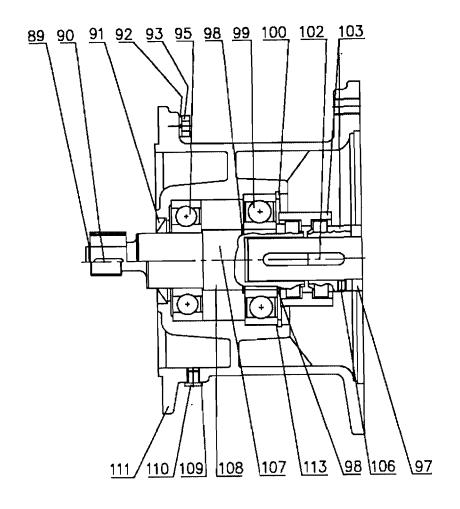
OIL LEAKAGE PROTECTION CHAMBER


The output shaft assembly includes an oil leakage protection chamber, which traps any possible oil leakage through the quadrilip™ seal.

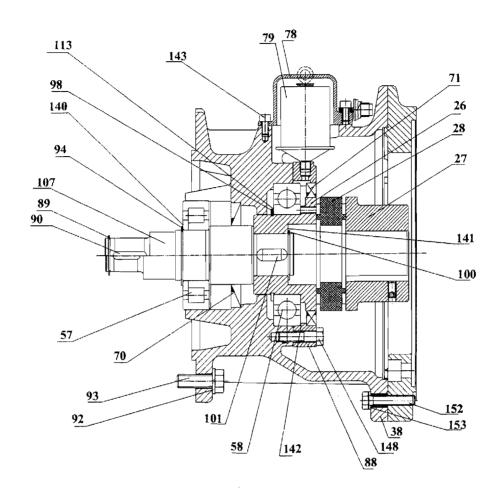
In case of lubricant leakage through the lower seals the lubricant runs over the slinger ring into the protection chamber flange and collects at the lowest point at which an oil indicator is placed. Alternately an oil-sensor can be used or the lubricant can be fed through a relief-pipe in place of the indicator.



ITEM NO.	DESCRIPTION
1	SLINGER RING
2	OIL-INDICATOR
3	SPHERICAL ROLLER BEARING


DRIVE SERIES L PARTS Dwg. No. 05-47754

PART NO.	DESCRIPTION	PART NO.	DESCRIPTION	PART NO.	DESCRIPTION	PART NO.	DESCRIPTION
701	OUTPUT GEAR	718	GASKET	735	GASKET+	751	RETAINING RING+
702	OUTPUT PINION SHAFT	719	SOCKET HEAD CAP SCREW	736	SEAL SLEEVE	752	AXIAL SHIM+
703	BEVEL GEAR SET	720	KEY	737	TAPER ROLLER BEARING+	753	SOCKET HEAD CAP SCREW
705	INPUT GEAR	722	SPHERICAL ROLLER BEARING+	738	TAPER ROLLER BEARING+	754	OIL SEAL+
706	INPUT PINION	723	SEALING PLUG+	739	RETAINING RING+	755	GROOVED PIN
707	OUTPUT SHAFT	724	SPACER	740	SEALING PLUG+	756	FLANGED EYE BOLT
708	KEY	725	AXIAL SHIM+	741	SHIM	760	NILOS RING
709	OIL SEAL+	726	GREASE FITTING	742	SPACER	761	NILOS RING
710	OIL SEAL+	727	RETAINING RING+	743	GEAR CASE	765	SLOTTED ROUND NUT
711	SHIM+	728	GASKET+	744	FLANGE	766	TAB WASHER
712	SHIM+	729	SPACER	745	TAPER ROLLER BEARING+	768	LOCK WASHER
713	SPHERICAL ROLLER BEARING+	730	FLANGE COVER	746	KEY	769	HEX HEAD CAP SCREW
714	GASKET+	731	RETAINING RING+	747	SHIM+	770	BACKSTOP
715	GEAR CASE COVER	732	GASKET+	748	TAPER ROLLER BEARING+	784	'O' RING+
716	SPACER	733	KEY	749	DRAIN PLUG	785	OIL SENSOR
717	AUTO VENT	734	DRAIN PLUG	750	SEALING PLUG+	789	SLINGER RING



PART NO.	DESCRIPTION	PART NO.	DESCRIPTION
89	RETAINING RING	102	KEY
90	KEY	103	COUPLING
91	SHAFT SEAL	106	SOCKET HEAD SET SCREW
92	WASHER	107	CLUTCH SHAFT
93	HEX HEAD CAP SCREW	108	CLUTCH PINION SHAFT
94	RETAINING RING	109	SEAL
95	CLUTCH SHAFT BEARING	110	OIL PLUG
98	RETAINING RING	111	MOTOR ADAPTER HOUSING
99	CLUTCH SHAFT BEARING	113	SHIM
100	RETAINING RING		

PART NO.	DESCRIPTION	PART NO.	DESCRIPTION
89	RETAINING RING	102	KEY
90	KEY	103	COUPLING
91	SHAFT SEAL	106	SOCKET HEAD SET SCREW
92	WASHER	107	CLUTCH SHAFT
93	HEX HEAD CAP SCREW	108	CLUTCH PINION SHAFT
95	CLUTCH SHAFT BEARING	109	SEAL
97	SPACER	110	OIL PLUG
98	RETAINING RING	111	MOTOR ADAPTER HOUSING
99	CLUTCH SHAFT BEARING	113	SHIM
100	RETAINING RING		

INPUT ASSEMBLY 320TC - 360 TC Dwg. No. 05-47755

PART NO.	DESCRIPTION	PART NO.	DESCRIPTION	PART NO.	DESCRIPTION
26	COUPLING	88	BEARING COVER	113	SHIM+
27	COUPLING	89	RETAINING RING+	140	SHIM+
28	SPIDER+	90	KEY	141	SHIM+
38	ADAPTER HOUSING	92	LOCK WASHER	142	SHIM+
57	ROLLER BEARING+	93	HEX HEAD CAP SCREW	143	SOCKET HEAD CAP SCREW
58	BALL BEARING+	94	RETAINING RING+	148	HEX HEAD CAP SCREW
70	OIL SEAL+	98	RETAINING RING+	152	HEX HEAD CAP SCREW
71	OIL SEAL+	100	RETAINING RING+	153	LOCK WASHER
78	CARTRIDGE COVER	101	KEY		
79	LUBRICATOR CANISTER+	107	INPUT SHAFT		

⁺ RECOMMEDED SPARE PARTS

MAINTENANCE RECORD				
DATE	WORK PERFORMED			
_	······································			
_				
	NOTES			
	-			